dc.creatorPerim E.
dc.creatorSantos R.P.
dc.creatorDa Silva Autreto P.A.
dc.creatorGalvao D.S.
dc.date2013
dc.date2015-06-25T19:16:11Z
dc.date2015-11-26T15:14:13Z
dc.date2015-06-25T19:16:11Z
dc.date2015-11-26T15:14:13Z
dc.date.accessioned2018-03-28T22:24:18Z
dc.date.available2018-03-28T22:24:18Z
dc.identifier9781632661166
dc.identifierMaterials Research Society Symposium Proceedings. Materials Research Society, v. 1526, n. , p. 12 - 17, 2013.
dc.identifier2729172
dc.identifier10.1557/opl.2013.494
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84900298213&partnerID=40&md5=641d480185006bcb17e0c44ccbb1aa15
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89429
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89429
dc.identifier2-s2.0-84900298213
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258821
dc.descriptionDuring the last years carbon-based nanostructures (such as, fullerenes, carbon nanotubes and graphene) have been object of intense investigations. The great interest in these nanostructures can be attributed to their remarkable electrical and mechanical properties. Their inorganic equivalent structures do exist and are based on boron nitride (BN) motifs. BN fullerenes, nanotubes and single layers have been already synthesized. Recently, the fracture patterns of single layer graphene and multi-walled carbon nanotubes under stress have been studied by theoretical and experimental methods. In this work we investigated the fracturing process of defective carbon and boron nitride nanotubes under similar stress conditions. We have carried out fully atomistic molecular reactive molecular dynamics simulations using the ReaxFF force field. The similarities and differences between carbon and boron nitride fracture patterns are addressed. © 2013 Materials Research Society.
dc.description1526
dc.description
dc.description12
dc.description17
dc.descriptionNovoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A., (2004) Science, 306, p. 666
dc.descriptionNakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., (1996) Phys. Rev. B, 54, p. 17954
dc.descriptionBarone, V., Peralta, J., (2008) Nano Letters, 8, p. 2210
dc.descriptionLi, X., Wang, X., Zhang, L., Lee, S., Dai, H., (2008) Science, 319, p. 1229
dc.descriptionHan, M.Y., Ozyilmaz, B., Zhang, Y., Kim, P., (2007) Phys. Rev. Lett., 98, p. 206805
dc.descriptionCampos-Delgado, J., Romo-Herrera, J.M., Jia, X., Cullen, D.A., Muramatsu, H., Kim, Y.A., Hayashi, T., Smith, D.J., (2008) Nano Lett., 8, p. 2773. , Y
dc.descriptionJiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., (2009) Nature, 458, p. 877
dc.descriptionKosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., (2009) Nature, 458, p. 872
dc.descriptionErickson, K., Gibb, A., Sinitskii, A., Rousseas, M., Alem, N., Tour, J., Zettl, A., (2011) Nano Letters, 11, p. 3221
dc.descriptionZeng, H., Zhi, C., Zhang, Z., Wei, X., Wang, X., Guo, W., Bando, Y., Golberg, D., (2010) Nano Letters, 10, p. 5049
dc.descriptionDos Santos, R.P.B., Perim, E., Autreto, P., Brunetto, G., Galvao, D., (2012) Nanotechnology, 23, p. 465702
dc.descriptionVan Duin, A., Dasgupta, S., Lorant, F., Goddard III, W., (2001) The Journal of Physical Chemistry A, 105, p. 9396
dc.descriptionPlimpton, S., (1995) Journal of Computational Physics, 117, p. 1
dc.descriptionZang, A., Stephansson, O., (2009) Stress Field of the Earth's Crust, , Springer, Berlim
dc.descriptionGarel, J., Leven, I., Zhi, C., Nagapriya, K.S., Popovitz-Biro, R., Golberg, D., Bando, Y., Joselevich, E., (2012) Nano Lett., 12, p. 6347
dc.languageen
dc.publisherMaterials Research Society
dc.relationMaterials Research Society Symposium Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleFracture Patterns Of Boron Nitride Nanotubes
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución