dc.creatorMorais C.F.
dc.creatorBraga M.F.
dc.creatorOliveira R.C.L.F.
dc.creatorPeres P.L.D.
dc.date2014
dc.date2015-06-25T18:05:52Z
dc.date2015-11-26T15:06:51Z
dc.date2015-06-25T18:05:52Z
dc.date2015-11-26T15:06:51Z
dc.date.accessioned2018-03-28T22:17:16Z
dc.date.available2018-03-28T22:17:16Z
dc.identifier9781479932726
dc.identifierProceedings Of The American Control Conference. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 489 - 494, 2014.
dc.identifier7431619
dc.identifier10.1109/ACC.2014.6858636
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84905681322&partnerID=40&md5=60b0b1f7c5fba9fa63165c554b25bc2c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88187
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88187
dc.identifier2-s2.0-84905681322
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257322
dc.descriptionThis paper investigates the problem of ℋ∞ static output feedback control design for discrete-time Markov jump linear systems (MJLS), assuming that the transition probability matrix is not precisely known, but affected by different classes of uncertainties: polytopic, bounded or completely unknown elements. All types of uncertainties are modeled through one single representation, expressed in terms of the Cartesian product of simplexes, called multi-simplex. The main novelty of the proposed design procedure is that, differently from previous approaches in the literature, parameter-dependent Lyapunov matrices are used to certify the closed-loop stability with an ℋ∞ bound for the discrete-time MJLS. The proposed conditions are based on linear matrix inequality relaxations performed in two steps: the first step generates a parameter-dependent state feedback controller that is employed as an input for the second stage, which synthesizes a robust static output feedback gain assuring an ℋ∞ guaranteed cost. The proposed strategy can also cope with ℋ ∞ state feedback control for discrete-time MJLS. Numerical examples illustrate the advantages of the proposed methodology when compared to other methods from the literature. © 2014 American Automatic Control Council.
dc.description
dc.description
dc.description489
dc.description494
dc.descriptionBoeing,et al.,GE Global Research,Honeywell,MathWorks,Mitsubishi
dc.descriptionSyrmos, V.L., Abdallah, C.T., Dorato, P., Grigoriadis, K., Static output feedback - A survey (1997) Automatica, 33 (2), pp. 125-137. , February
dc.descriptionDe Oliveira, M.C., Geromel, J.C., Bernussou, J., Extended H2 and H∞ characterization and controller parametrizations for discrete-time systems (2002) Int. J. Control, 75 (9), pp. 666-679. , June
dc.descriptionBoukas, E.K., (2005) Stochastic Switching Systems: Analysis and Design, , Berlin, Germany: Birkhäuser
dc.descriptionCosta, O.L.V., Fragoso, M.D., Marques, R.P., (2005) Discrete-time Markovian Jump Linear Systems, , New York, NY, USA: Springer-Verlag
dc.descriptionDe Souza, C.E., Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems (2006) IEEE Trans. Autom. Control, 51 (5), pp. 836-841. , May
dc.descriptionOliveira, R.C.L.F., Vargas, A.N., Do Val, J.B.R., Peres, P.L.D., Robust stability, H2 analysis and stabilisation of discrete-time Markov jump linear systems with uncertain probability matrix (2009) Int. J. Control, 82 (3), pp. 470-481. , March
dc.descriptionBoukas, E.K., H∞ control of discrete-time Markov jump systems with bounded transition probabilities (2009) Optim. Control Appl. Meth., 30 (5), pp. 477-494
dc.descriptionMa, S., Zhang, C., Zhu, S., Robust stability for discrete-time uncertain singular Markov jump systems with actuator saturation (2011) IET Control Theory & Appl., 5 (2), pp. 255-262. , January
dc.descriptionZhang, L., Boukas, E.K., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities (2009) Automatica, 45 (2), pp. 463-468. , February
dc.descriptionZhang, L., Boukas, E.K., H∞ control for discrete-time Markovian jump linear systems with partly unknown transition probabilities (2009) Int. J. Robust Nonlinear Control, 19 (8), pp. 868-883. , July
dc.descriptionOliveira, R.C.L.F., Bliman, P.-A., Peres, P.L.D., Robust LMIs with parameters in multi-simplex: Existence of solutions and applications (2008) Proc. 47th IEEE Conf. Decision Control, pp. 2226-2231. , Cancun, Mexico, December
dc.descriptionPeaucelle, D., Arzelier, D., An efficient numerical solution for H2 static output feedback synthesis (2001) Proc. 2001 Eur. Control Conf., pp. 3800-3805. , Porto, Portugal, September
dc.descriptionArzelier, D., Peaucelle, D., Salhi, S., Robust static output feedback stabilization for polytopic uncertain systems: Improving the guaranteed performance bound (2003) Proc. 4th IFAC Symp. Robust Control Design, pp. 425-430. , Milan, Italy, June
dc.descriptionMehdi, D., Boukas, E.K., Bachelier, O., Static output feedback design for uncertain linear discrete time systems (2004) IMA J. Math. Control Inform., 21 (1), pp. 1-13. , March
dc.descriptionAgulhari, C.M., Oliveira, R.C.L.F., Peres, P.L.D., LMI relaxations for reduced-order robust H∞ control of continuous-time uncertain linear systems (2012) IEEE Trans. Autom. Control, 57 (6), pp. 1532-1537. , June
dc.descriptionBoukas, E.K., Guaranteed cost for stochastic systems with unknown transition jump rate (2009) Proc. 2009 Amer. Control Conf., pp. 4422-4427. , St. Louis, MO, USA, June
dc.descriptionChe, W.-W., Wang, J.-L., Static output feedback H∞ control for discrete-time Markov jump linear systems (2010) Proc. 8th IEEE Int. Conf. on Control and Automation (ICCA'10), pp. 2278-2283. , Xiamen, China, June
dc.descriptionGonçalves, A.P.C., Fioravanti, A.R., Al-Radhawi, M.A., Geromel, J.C., H∞ state feedback control of discrete-time Markov jump linear systems through linear matrix inequalities (2011) Proc. 18th IFAC World Congr., pp. 12620-12625. , Milano, Italy, August
dc.descriptionGonçalves, A.P.C., Fioravanti, A.R., Geromel, J.C., H∞ robust and networked control of discrete-time MJLS through LMIs (2012) J. Franklin Inst., 349 (6), pp. 2171-2181. , August
dc.descriptionMorais, C.F., Braga, M.F., Oliveira, R.C.L.F., Peres, P.L.D., H2 control of discrete-time Markov jump linear systems with uncertain transition probability matrix: Improved linear matrix inequality relaxations and multi-simplex modeling (2013) IET Control Theory & Appl., 7, pp. 1665-1674. , August
dc.descriptionSeiler, P., Sengupta, R., A bounded real lemma for jump systems (2003) IEEE Trans. Autom. Control, 48 (9), pp. 1651-1654. , September
dc.descriptionBliman, P.-A., An existence result for polynomial solutions of parameter-dependent LMIs (2004) Syst. Control Letts., 51 (3-4), pp. 165-169. , March
dc.descriptionOliveira, R.C.L.F., Peres, P.L.D., Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations (2007) IEEE Trans. Autom. Control, 52 (7), pp. 1334-1340. , July
dc.descriptionBoyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., (1994) Linear Matrix Inequalities in System and Control Theory, , Philadelphia, PA: SIAM Studies in Applied Mathematics
dc.descriptionPipeleers, G., Demeulenaere, B., Swevers, J., Vandenberghe, L., Extended LMI characterizations for stability and performance of linear systems (2009) Syst. Control Letts., 58 (7), pp. 510-518. , July
dc.descriptionScherer, C.W., Relaxations for robust linear matrix inequality problems with verifications for exactness (2005) SIAM J. Matrix Anal. Appl., 27 (2), pp. 365-395. , June
dc.descriptionLöfberg, J., YALMIP: A toolbox for modeling and optimization in MATLAB (2004) Proc. 2004 IEEE Int. Symp. on Comput. Aided Control Syst. Des., pp. 284-289. , Taipei, Taiwan, September
dc.descriptionSturm, J.F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (1999) Optim. Method Softw., 11 (1-4), pp. 625-653. , http://sedumi.ie.lehigh.edu
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationProceedings of the American Control Conference
dc.rightsfechado
dc.sourceScopus
dc.titleℋ∞ Static Output Feedback Control Of Discrete-time Markov Jump Linear Systems With Uncertain Transition Probability Matrix
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución