dc.creatorMartins T.D.
dc.creatorBataglioli R.A.
dc.creatorTaketa T.B.
dc.creatorVasconcellos F.D.C.
dc.creatorBeppu M.M.
dc.date2015
dc.date2015-06-25T12:50:58Z
dc.date2015-11-26T14:57:53Z
dc.date2015-06-25T12:50:58Z
dc.date2015-11-26T14:57:53Z
dc.date.accessioned2018-03-28T22:09:39Z
dc.date.available2018-03-28T22:09:39Z
dc.identifier
dc.identifierApplied Surface Science. Elsevier, v. 329, n. , p. 287 - 291, 2015.
dc.identifier1694332
dc.identifier10.1016/j.apsusc.2014.12.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922845604&partnerID=40&md5=618c0043ed48256cbba25e340fa3e101
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85190
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85190
dc.identifier2-s2.0-84922845604
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255745
dc.descriptionLow-temperature plasma treatments are used to perform surface modification on polymers, aiming to improve the surface properties according to the desired application. In this work, polyelectrolyte multilayers (PEMs), built by layer-by-layer deposition technique, were treated using high frequency low-temperature air plasma. We evaluated the effect of the exposure time (20 and 300 s) and its effects on PEMs with two different top layers: alginate and carboxymethylcellulose. Chitosan was used as the cationic polymer to build the LbL films with the oppositely charged anionic polymers, alginate and carboxymethylcellulose. Our results showed that the surface topology, wettability and free charges within layers are highly correlated to the polymer pair used. PEMs of the chitosan/alginate system are thinner and hydrophilic, and present a surface with wider peaks. We found that plasma treatment promotes substantial changes on the PEMs and that 20 s of exposure time is enough to perform these changes. In all cases, after plasma treatment, PEMs' thickness and free charge distribution were reduced and wettability was enhanced.
dc.description329
dc.description
dc.description287
dc.description291
dc.descriptionDecher, G., Fuzzy nanoassemblies toward layered polymeric multicomposites (1997) Science, 277, pp. 1232-1237
dc.descriptionDecher, G., Hong, J.D., Schmitt, J., Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces (1992) Thin Solid Films, 210-211, pp. 831-835
dc.descriptionDe Villiers, M.M., Otto, D.P., Strydom, S.J., Lvov, Y.M., Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly (2011) Adv. Drug Delivery Rev., 63, pp. 701-715
dc.descriptionGoddard, J.M., Hotchkiss, J.H., Polymer surface modification for the attachment of bioactive compounds (2007) Prog. Polym. Sci., 32, pp. 698-725
dc.descriptionGil'Man, A.B., Low-temperature plasma treatment as an effective method for surface modification of polymeric materials (2003) High Energy Chem., 37, pp. 17-23
dc.descriptionBormashenko, E., Chaniel, G., Grynyov, R., Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery (2013) Appl. Surf. Sci., 273, pp. 549-553
dc.descriptionPantoja, M., Encinas, N., Abenojar, J., Martínez, M.A., Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion (2013) Appl. Surf. Sci., 280, pp. 850-857
dc.descriptionSafinia, L., Wilson, K., Mantalaris, A., Bismarck, A., Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications (2007) Macromol. Biosci., 7, pp. 315-327
dc.descriptionTompkins, B.D., Dennison, J.M., Fisher, E.R., H2O plasma modification of track-etched polymer membranes for increased wettability and improved performance (2013) J. Membr. Sci., 428, pp. 576-588
dc.descriptionTsougeni, K., Petrou, P.S., Tserepi, A., Kakabakos, S.E., Gogolides, E., Nano-texturing of poly(methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption (2009) Microelectron. Eng., 86, pp. 1424-1427
dc.descriptionRiccardi, C., Barni, R., Selli, E., Mazzone, G., Massafra, M.R., Marcandalli, B., Poletti, G., Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment (2003) Appl. Surf. Sci., 211, pp. 386-397
dc.descriptionZhang, C., Zhou, Y., Shao, T., Xie, Q., Xu, J., Yang, W., Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure (2014) Appl. Surf. Sci., 311, pp. 468-477
dc.descriptionShao, T., Zhang, C., Long, K., Zhang, D., Wang, J., Yan, P., Zhou, Y., Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air (2010) Appl. Surf. Sci., 256, pp. 3888-3894
dc.descriptionShao, T., Zhang, C., Yu, Y., Niu, Z., Jiang, H., Xu, J., Li, W., Zhou, Y., Discharge characteristic of nanosecond-pulse DBD in atmospheric air using magnetic compression pulsed power generator (2012) Vacuum, 86, pp. 876-880
dc.descriptionNiu, Z., Zhang, C., Shao, T., Fang, Z., Yu, Y., Yan, P., Repetitive nanosecond-pulse dielectric barrier discharge and its application on surface modification of polymers (2013) Surf. Coat. Technol., 228, pp. S578-S582
dc.descriptionRinaudo, M., Pavlov, G., Desbrières, J., Influence of acetic acid concentration on the solubilization of chitosan (1999) Polymer, 40, pp. 7029-7032
dc.descriptionMartinsen, A., Storrø, I., Skjårk-Bræk, G., Alginate as immobilization material: III. Diffusional properties (1992) Biotechnol. Bioeng., 39, pp. 186-194
dc.descriptionBiesheuvel, P.M., Cohen Stuart, M.A., Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers (2004) Langmuir, 20, pp. 2785-2791
dc.descriptionVasconcellos, F.C., Swiston, A.J., Beppu, M.M., Cohen, R.E., Rubner, M.F., Bioactive polyelectrolyte multilayers: Hyaluronic acid mediated B lymphocyte adhesion (2010) Biomacromolecules, 11, pp. 2407-2414
dc.descriptionHaberska, K., Ruzgas, T., Polymer multilayer film formation studied by in situ ellipsometry and electrochemistry (2009) Bioelectrochemistry, 76, pp. 153-161
dc.descriptionRadeva, T., Kamburova, K., Petkanchin, I., Formation of polyelectrolyte multilayers from polysaccharides at low ionic strength (2006) J. Colloid Interface Sci., 298, pp. 59-65
dc.descriptionVesel, A., Modification of polystyrene with a highly reactive cold oxygen plasma (2010) Surf. Coat. Technol., 205, pp. 490-497
dc.descriptionOzgen, O., Aksoy, E.A., Hasirci, V., Hasirci, N., Surface characterization and radical decay studies of oxygen plasma-treated PMMA films (2013) Surf. Interface Anal., 45, pp. 844-853
dc.descriptionBerger, F.M., Ludwig, B.J., Wielich, K.H., The hydrophilic and acid binding properties of alginates (1953) Am. J. Dig. Dis., 20, pp. 39-42
dc.descriptionIkeda, A., Takemura, A., Ono, H., Preparation of low-molecular weight alginic acid by acid hydrolysis (2000) Carbohydr. Polym., 42, pp. 421-425
dc.descriptionSlepička, P., Kasálková, N.S., Stránská, E., Bačáková, L., Švorčík, V., Surface characterization of plasma treated polymers for applications as biocompatible carriers (2013) Express Polym. Lett., 7, pp. 535-545
dc.descriptionGeyter, N., Sarani, A., Jacobs, T., Nikiforov, A.Y., Desmet, T., Dubruel, P., Surface modification of poly-(-caprolactone with an atmospheric pressure plasma jet (2013) Plasma Chem. Plasma Process., 33, pp. 165-175
dc.descriptionGołda, M., Brzychczy-Włoch, M., Faryna, M., Engvall, K., Kotarba, A., Oxygen plasma functionalization of parylene C coating for implants surface: Nanotopography and active sites for drug anchoring (2013) Mat. Sci. Eng. C-Bio S, 33, pp. 4221-4227
dc.descriptionBorges, A.M.G., Benetoli, L.O., Licínio, M.A., Zoldan, V.C., Santos-Silva, M.C., Assreuy, J., Pasa, A.A., Soldi, V., Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion (2013) Mat. Sci. Eng. C-Bio S, 33, pp. 1315-1324
dc.descriptionKamińska, A., Kaczmarek, H., Kowalonek, J., The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action (2002) Eur. Polym. J., 38, pp. 1915-1919
dc.descriptionChung, A.J., Rubner, M.F., Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films (2002) Langmuir, 18, pp. 1176-1183
dc.descriptionYamanlar, S., Sant, S., Boudou, T., Picart, C., Khademhosseini, A., Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films (2011) Biomaterials, 32, pp. 5590-5599
dc.descriptionYoo, D., Shiratori, S.S., Rubner, M.F., Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes (1998) Macromolecules, 31, pp. 4309-4318
dc.descriptionSakaguchi, H., Serizawa, T., Akashi, M., Layer-by-layer assembly on hydrogel surfaces and control of human whole blood coagulation (2003) Chem. Lett., 32, pp. 174-175
dc.descriptionMendelsohn, J.D., Yang, S.Y., Hiller, J.A., Hochbaum, A.I., Rubner, M.F., Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films (2002) Biomacromolecules, 4, pp. 96-106
dc.languageen
dc.publisherElsevier
dc.relationApplied Surface Science
dc.rightsfechado
dc.sourceScopus
dc.titleSurface Modification Of Polyelectrolyte Multilayers By High Radio Frequency Air Plasma Treatment
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución