dc.creatorSilva P.B.
dc.creatorMencik J.-M.
dc.creatorArruda J.R.F.
dc.date2014
dc.date2015-06-25T17:57:29Z
dc.date2015-11-26T14:51:56Z
dc.date2015-06-25T17:57:29Z
dc.date2015-11-26T14:51:56Z
dc.date.accessioned2018-03-28T22:03:48Z
dc.date.available2018-03-28T22:03:48Z
dc.identifier9789073802919
dc.identifierProceedings Of Isma 2014 - International Conference On Noise And Vibration Engineering And Usd 2014 - International Conference On Uncertainty In Structural Dynamics. Ku Leuven, v. , n. , p. 2597 - 2610, 2014.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84913568856&partnerID=40&md5=47cb0df79189913e80bda5f1e121b03a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87262
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87262
dc.identifier2-s2.0-84913568856
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254660
dc.descriptionIn this work, the harmonic forced response of coupled mechanical systems composed of one-dimensional periodic structures and elastic junctions are computed by means of the wave finite element (WFE) method. In the present study, receptance matrices of periodic structures are formulated on the basis of numerical wave modes. Also, the Craig-Bampton (CB) method, enhanced with a wave-based selection procedure of the fixed-interface modes, is used to derive receptance matrices of junctions. The assembly between the periodic structures and the junctions follows from a classic domain decomposition technique. The proposed WFE-based approach is validated through the analysis of a 3D aircraft fuselage involving stiffened cylindrical shells. The relevance of the WFE-based approach, in terms of accuracy and CPU time saving, is highlighted in comparison with the conventional FE and CB methods.
dc.description
dc.description
dc.description2597
dc.description2610
dc.descriptionMead, D.J., A general theory of harmonic wave propagation in linear periodic systems with multiple coupling (1973) Journal of Sound and Vibration, 27 (2), pp. 235-260. , Academic Press
dc.descriptionZhong, W.X., Williams, F.W., On the direct solution of wave propagation for repetitive structures (1995) Journal of Sound and Vibration, 181 (3), pp. 485-501. , Academic Press
dc.descriptionSignorelli, J., Von Flotow, A.H., Wave propagation, power flow, and resonance in a truss beam (1988) Journal of Sound and Vibration, 126 (1), pp. 127-144. , Academic Press
dc.descriptionMencik, J.-M., Ichchou, M.N., A substructuring technique for finite element wave propagation in multi-layered systems (2008) Computer Methods in Applied Mechanics and Engineering, 197 (6-8), pp. 505-523. , Elsevier
dc.descriptionMencik, J.-M., Ichchou, M.N., Wave finite elements in guided elastodynamics with internal fluid (2007) Int. J. Solids Struct., 44 (7-8), pp. 2148-2167. , John Wiley & Sons
dc.descriptionManconi, E., Mace, B.R., Gaziera, R., Wave finite element analysis of fluid-filled pipes (2009) Proceedings of Noise and Vibration: Emerging Methods NOVEM, 12p. , B. R. Mace, N. S. Ferguson and E. Rustighi, editors Oxford, UK, 2009 April 5-8, Oxford
dc.descriptionDuhamel, D., Mace, B.R., Brennan, M.J., Finite element analysis of the vibrations of waveguides and periodic structures (2006) Journal of Sound and Vibration, 294 (1), pp. 205-220. , Elsevier
dc.descriptionMead, D.J., The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis (2009) Journal of Sound and Vibration, 319 (1), pp. 282-304. , Elsevier
dc.descriptionSilva, P.B., Goldstein, A.L., Arruda, J.R.F., Building spectral element dynamic matrices using finite element models of waveguide slices and elastodynamic equations (2013) Shock and Vibration, 20 (3), pp. 439-458. , IOS Press
dc.descriptionWaki, Y., Mace, B.R., Brennan, M.J., Free and forced vibrations of a tyre using a wave/finite element approach (2009) Journal of Sound and Vibration, 323 (3), pp. 737-756. , Elsevier
dc.descriptionWaki, Y., Mace, B.R., Brennan, M.J., Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides (2009) Journal of Sound and Vibration, 327 (1-2), pp. 92-108. , Elsevier
dc.descriptionMencik, J.M., On the low-and mid-frequency forced response of elastic structures using wave finite elements with one-dimensional propagation (2010) Computers & Structures, 88 (11-12), pp. 674-689. , Elsevier
dc.descriptionMencik, J.M., Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies (2011) Computer Methods in Applied Mechanics and Engineering, 200 (45), pp. 3051-3065. , Elsevier
dc.descriptionMencik, J.-M., A wave finite element based formulation for computing the forced response of structures involving rectangular flat shells (2013) Int. J. Numer. Meth. Engng., 95 (2), pp. 91-120. , John Wiley & Sons
dc.descriptionMencik, J.M., New advances in the forced response computation of periodic structures using the wave finite element (WFE) method (2014) Computational Mechanics, Springer Berlin Heidelberg, pp. 1-13
dc.descriptionMace, B.R., Duhamel, D., Brennan, M.J., Hinke, L., Finite element prediction of wave motion in structural waveguides (2005) J. Acoust. Soc. Am., 117 (5), pp. 2835-2843. , ASA
dc.descriptionDuhamel, D., Finite element computation of green's functions (2007) Engineering Analysis with Boundary Elements, 31 (11), pp. 919-930. , Elsevier
dc.descriptionMace, B.R., Manconi, E., Modelling wave propagation in two-dimensional structures using finite element analysis (2008) Journal of Sound and Vibration, 318 (4-5), pp. 884-902. , Elsevier
dc.descriptionDoyle, J.F., (1997) Wave Propagation in Structures, , 2nd edition, Springer-Verlag, New York
dc.descriptionCraig, R.R., Bampton, M.C.C., Coupling of substructures for dynamic analyses (1968) AIAA Journal, 6 (7), pp. 1313-1319. , AIAA
dc.descriptionMencik, J.M., Ichchou, M.N., Multi-mode propagation and diffusion in structures through finite elements (2005) European Journal of Mechanics - A/Solids, 24 (5), pp. 877-898. , Elsevier
dc.descriptionKlerk, D., Rixen, D.J., Voormeeren, S.N., General framework for dynamic substructuring: History, review and classification of techniques (2008) AIAA Journal, 46 (5), pp. 1169-1181. , AIAA
dc.descriptionPetyt, M., (2010) Introduction to Finite Element Vibration Analysis, , 2nd Edition, Cambridge University Press, Cambridge
dc.languageen
dc.publisherKU Leuven
dc.relationProceedings of ISMA 2014 - International Conference on Noise and Vibration Engineering and USD 2014 - International Conference on Uncertainty in Structural Dynamics
dc.rightsfechado
dc.sourceScopus
dc.titleOn The Forced Harmonic Response Of Coupled Systems Via A Wfe-based Super-element Approach
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución