dc.creatorSchulz P.A.
dc.creatorTejedor C.
dc.date1989
dc.date2015-06-30T13:43:32Z
dc.date2015-11-26T14:38:35Z
dc.date2015-06-30T13:43:32Z
dc.date2015-11-26T14:38:35Z
dc.date.accessioned2018-03-28T21:43:44Z
dc.date.available2018-03-28T21:43:44Z
dc.identifier
dc.identifierPhysical Review B. , v. 39, n. 15, p. 11187 - 11190, 1989.
dc.identifier1631829
dc.identifier10.1103/PhysRevB.39.11187
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-35949012729&partnerID=40&md5=4908360f1115da3c973a20e21c0338c1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/98686
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/98686
dc.identifier2-s2.0-35949012729
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249647
dc.descriptionWe predict the existence of negative differential resistance in nonresonant tunneling through a single barrier when a magnetic field is applied perpendicular to the current. Moreover, the use of a transfer Hamiltonian method for the calculation of the tunneling current allows the clear understanding of the physical origin of the experimentally observed oscillations as a function of the magnetic field. These two phenomena are consequences of the existence of individualized tunneling channels connected with anticrossings in the dispersion relation. © 1989 The American Physical Society.
dc.description39
dc.description15
dc.description11187
dc.description11190
dc.languageen
dc.publisher
dc.relationPhysical Review B
dc.rightsaberto
dc.sourceScopus
dc.titleQuantum Oscillations And Negative Differential Resistance In Nonresonant Magnetotunneling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución