dc.creatorNolasco Junior J.
dc.creatorDe Massaguer P.R.
dc.date2007
dc.date2015-06-30T18:45:51Z
dc.date2015-11-26T14:33:52Z
dc.date2015-06-30T18:45:51Z
dc.date2015-11-26T14:33:52Z
dc.date.accessioned2018-03-28T21:37:16Z
dc.date.available2018-03-28T21:37:16Z
dc.identifier
dc.identifierJournal Of Food Process Engineering. , v. 30, n. 5, p. 625 - 639, 2007.
dc.identifier1458876
dc.identifier10.1111/j.1745-4530.2007.00122.x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34548273057&partnerID=40&md5=c244e5d811d7923a9c68b1ab874d7d71
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104672
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104672
dc.identifier2-s2.0-34548273057
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247963
dc.descriptionThermal death kinetic parameters for Bacillus stearothermophilusspores were evaluated in sugarcane must (21.5°Brix, pH = 6.14) at temperatures ranging from 98 to 130C, using the thermal-death-time tube method and survivors count. Resulting survival curves showed strong nonlinearity and different shapes according to heating temperature. The 98 and 110C curves showed an initial shoulder or thermal lag and were adjusted to the logistic model. At the temperature range of 120-125C, the two-term exponential model for population with heterogeneous heat resistance was fitted, and at 130C, the classic linear model was suitable. It was shown that rate constants are influenced by temperature according to two irreconcilable methods: the Arrhenius and the Bigelow methods. Activation energy (Ea) obtained was 249.52 kJ/mol while thermal resistance parameter (z-value) calculated from Ea and the Bigelow method were 11.48 and 9.19C, respectively. Thermal death kinetic constant, k values, varied from 0.019 to 13.63/min. © 2007, Blackwell Publishing.
dc.description30
dc.description5
dc.description625
dc.description639
dc.descriptionAbraham, G., Debray, E., Candau, Y., Piar, G., Mathematical model of thermal destruction of Bacillus stearothermophilus spores (1990) Appl. Environ. Microbiol., 56 (10), pp. 3073-3080
dc.descriptionAlcarde, V.E., Yokoya, F., Efeito da população de bactérias na floculação de leveduras isoladas de processos industriais de fermentação alcoólica (2003) STAB, 21 (4), pp. 40-42
dc.descriptionAlderton, G., Snell, N., Chemical states of bacterial spores: Heat resistance and its kinetics at intermediate water activity (1970) Appl. Microbiol., 19 (4), pp. 565-572
dc.descriptionBusta, F.F., Thermal inactivation characteristics of bacterial spores at ultrahigh temperatures (1967) Appl. Microbiol., 15 (3), pp. 640-645
dc.descriptionDavies, F.L., Underwood, H.M., Perkin, A.G., Burton, H., Thermal death kinetics of Bacillus stearothermophilus spores at ultra high temperatures (1977) J. Food Technol., 12, pp. 115-129
dc.descriptionGallo, C.R., Canhos, V.P., Contaminantes bacterianos na fermentação alcoólica-revisão (1991) STAB, 9 (4-5), pp. 35-40
dc.descriptionGeeraerd, A.H., Herremans, C.H., Van Impe, J.F., Structural model requirements to describe microbial inactivation during a mild heat treatment (2000) Int. J. Food Microbiol., 59, pp. 185-209
dc.descriptionGouthier, H.A., Massaguer, P.R., Determinação da resistência térmica de microrganismos indicadores da esterilização em caldo de cana (1987) Brazilian Microbiology Congress, pp. 46-47. , In. XIV, Viçosa-MG. Abstract. D12, pp., Imprensa Universitária, Viçosa, Brazil
dc.descriptionHeldman, D.R., Newsome, R.L., Kinetic models for microbial survival during processing (2003) Food Technol., 57 (8), pp. 40-46
dc.descriptionIciek, J., Papiewska, A., Molska, M., Inactivation of Bacillus stearothermophilus spores during thermal processing (2006) J. Food Eng., 77, pp. 406-410
dc.descriptionKessler, H.G., (1981) Food Engineering and Dairy Technology., , Verlag A. Kessler, Freising, Germany
dc.descriptionKlaushofer, H., Clarke, M.A., Rein, P.W., Mauch, W., Microbiology (1998) Sugar Technology - Beet and Cane Sugar Manufacture, pp. 993-1008. , In. P.W. van der Poel, H. Schiweck. T. Schwartz, eds.) pp., Verlag Dr. Albert Bartens KG, Berlin, Germany
dc.descriptionLima, T.C.S., Grisi, B.M., Bonato, M.C.M., Bacteria isolated from a sugarcane agroecosystem: Their potential produtction of polyhydroxyalcanoates and resistance to antibiotics (1999) Rev. Microbiol., 30, pp. 214-224
dc.descriptionNolasco Junior, J., (2005), Msc Thesis, pp. 38-98, Universidade Estadual de Campinas - UNICAMP-Faculdade de Engenharia de Alimentos, Campinas, São Paulo-BRAZILNolasco Junior, J., De Massaguer, P.R., Thermal degradation kinetics of sucrose, glucose and fructose in sugarcane must for bioethanol production (2006) J. Food Process Eng., 29, pp. 462-477
dc.descriptionOliva-Neto, P., Yokoya, F., Susceptibility of Saccharomyces cerevisiae and lactic acid bactéria from the alcohol industry to several antimicrobial compounds (2001) Braz. J. Microbiol., 32, pp. 10-14
dc.descriptionOliveira-Freguglia, R.M., Horii, J., Viabilidade celular de Saccharomyces cerevisiae em cultura mista com Lactobacillus fermentum (1998) Sci. Agric. (Piracicaba, Brazil), 55 (3), pp. 1-12
dc.descriptionPeleg, M., Modeling microbial populations with the original and modified versions of the continuous and discrete logistic equations (1997) Crit. Rev. Food Sci. Nutr., 37 (5), pp. 471-490
dc.descriptionPflug, I.J., (1990) Microbiology and Engineering of Sterilization Processes. Environmental Sterilization Laboratory, 7th, , Ed., Environmental Sterilization Laboratory, Minneapolis, MN
dc.descriptionPruitt, K.M., Kamau, D.N., Mathematical models of bacterial growth, inhibition and death under combined stress conditions (1993) J. Indust. Microbiol., 12, pp. 221-231
dc.descriptionRamaswamy, H.S., Van De Voort, F.R., Ghazala, S., An analysis of TDT and Arrhenius methods for handling process and kinetic data (1989) J. Food Sci., 54 (5), pp. 1322-1326
dc.descriptionRodriguez, A.C., Smerage, G.H., Teixeira, A.A., Lindsay, J.A., Busta, F.F., Population model of bacterial spores for validation of dynamic thermal processes (1992) J. Food Process Eng., 15, pp. 1-30
dc.descriptionStroppa, C.T., Steckelberg, C., Serra, G.E., Andrietta, M.G.S., Andrietta, S.R., Consumo de açúcar por bactérias contaminantes da fermentação alcoólica associado ao uso de antibióticos (1998) STAB, 16, pp. 35-38
dc.descriptionStroppa, C.T., Andrietta, M.G.S., Andrietta, S.R., Steckelberg, C., Serra, G.E., Use of penicillin and monesin to control bacterial contamination of Brazilian alcohol fermentations (2000) Int. Sugar J., 102 (1214), pp. 78-82
dc.descriptionStumbo, C.R., (1973) Thermobacteriology in Food Processing, 2nd, , Ed., Academic Press, New York, NY
dc.descriptionThal, L.A., Zervos, J.M., Occurrence and epidemiology of resistance to virginiamycin and streptogramins (1999) J. Antimicrob. Chemother., 43, pp. 171-176
dc.descriptionTrombini, M.A.M., Rovanhol, A.A., Vitti, L.S.S., Beda, D.F., Porto, R.C.B., Sá, J.S., Causas da contaminação e suas conseqüências em usinas de açúcar e álcool (1988) STAB, 16 (6), pp. 1-18
dc.descriptionVan Boekel, M.A.J.S., On the use of Weibull model to describe thermal inactivation of microbial vegetative cells (2002) Int. J. Food Microbiol., 74, pp. 139-159
dc.descriptionVan Den Bogaard, A.E., Willems, R., London, N., Top, J., Stobberingh, E.E., Antibiotic resistance of faecal enterococci in poultry slaughterers (2002) J. Antimicrob. Chemother., 49, pp. 497-505. , http://jac.oupjournals.org/cgi/content/abstract/49/3/497, Disponível em. (accessed June 20, 2004)
dc.descriptionWescott, G.G., Fairchild, T.M., Foegeding, P.M., Bacillus cereus and Bacillus stearothermophilus spore inactivation in batch and continuous flow systems (1995) J. Food Sci., 60 (3), pp. 446-450
dc.descriptionYokoya, F., Oliva-Neto, P., Características da floculação de leveduras por Lactobacillus fermentum (1991) Rev. Microbiol., 22 (1), pp. 12-16
dc.languageen
dc.publisher
dc.relationJournal of Food Process Engineering
dc.rightsfechado
dc.sourceScopus
dc.titleThermal Death Kinetics Of B. Stearothermophilus Spores In Sugarcane Must
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución