dc.creatorAmazonas D.
dc.creatorCosta J.C.
dc.creatorPestana R.
dc.creatorSchleicher J.
dc.date2007
dc.date2015-06-30T18:38:20Z
dc.date2015-11-26T14:30:34Z
dc.date2015-06-30T18:38:20Z
dc.date2015-11-26T14:30:34Z
dc.date.accessioned2018-03-28T21:33:55Z
dc.date.available2018-03-28T21:33:55Z
dc.identifier9781605601557
dc.identifier69th European Association Of Geoscientists And Engineers Conference And Exhibition 2007: Securing The Future. Incorporating Spe Europec 2007. Society Of Petroleum Engineers, v. 5, n. , p. 3041 - 3045, 2007.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-55549120929&partnerID=40&md5=8490b961c7b3d13ad317cd8ad01e7e57
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104119
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104119
dc.identifier2-s2.0-55549120929
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247151
dc.descriptionSeismic migration by downward continuation using the one-way wave equation approximations has two shortcomings: imaging steep dip reflectors and handling evanescent waves. Complex Fade approximations allow a better treatment of evanescent modes, stabilizing finite-difference migration without requiring special treatment for the migration domain boundaries. Imaging steep dip reflectors can be improved using several terms in the Padé expansion. We discuss the implementation and evaluation of wide-angle complex Fade approximations for finite-difference and Fourier finite-difference migration methods. The dispersion relation and the impulsive response of the migration operator provide criteria to select the number of terms and coefficients in the Fade expansion. This assures stability for a prescribed maximum propagation direction. The implementations are validated on the Marmousi model dataset and SEG/EAGE salt model data.
dc.description5
dc.description
dc.description3041
dc.description3045
dc.descriptionBamberger, A., Engquist, L.H., Joly, P., Higher order paraxial wave equation approximations in heterogeneous media (1988) J. Appl. Math, 48, pp. 129-154
dc.descriptionBiondi, B., Stable wide-angle fourier finite-difference downward extrapolation of 3-D wavefields (2002) Geophys, 67, pp. 872-882
dc.descriptionGazdag, J., Wave equation migration with the phase-shift method (1978) Geophys, 73, pp. 1342-1351
dc.descriptionMillinazzo, F.A., Zala, C.A., Brooke, G.H., Square-root approximations for parabolic equation algorithms (1997) J. Acoust. Soc. Am, 101, pp. 760-766
dc.descriptionRistow, D., Kühl, T., Fourier finite-difference migration (1994) Geophys, 59, pp. 1882-1893
dc.descriptionZhang, L., Rector, J.W., Hoversten, G.M., Split-step complex padé migration. (2003) J. of Seism. Expl, 12, pp. 229-236
dc.languageen
dc.publisherSociety of Petroleum Engineers
dc.relation69th European Association of Geoscientists and Engineers Conference and Exhibition 2007: Securing The Future. Incorporating SPE EUROPEC 2007
dc.rightsfechado
dc.sourceScopus
dc.titleWide Angle Fd And Ffd Migration Using Complex Padé Approximations
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución