dc.creatorLemos T.A.
dc.creatorKobarg J.
dc.date2006
dc.date2015-06-30T18:14:53Z
dc.date2015-11-26T14:28:13Z
dc.date2015-06-30T18:14:53Z
dc.date2015-11-26T14:28:13Z
dc.date.accessioned2018-03-28T21:31:23Z
dc.date.available2018-03-28T21:31:23Z
dc.identifier
dc.identifierCell Biochemistry And Biophysics. , v. 44, n. 3, p. 463 - 474, 2006.
dc.identifier10859195
dc.identifier10.1385/CBB:44:3:463
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-31744447890&partnerID=40&md5=9240e28b8aa567c7beb350e09fd7759d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103673
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103673
dc.identifier2-s2.0-31744447890
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246535
dc.descriptionThe human protein CGI-55 has been described as a chromo-helicase-DNA- binding domain protein (CHD)-S interacting protein and was also found to interact with the 3′-region of the plasminogen activator inhibitor (PAI)-1 mRNA. Here, we used CGI-55 as a "bait" in a yeast two-hybrid screen and identified eight interacting proteins: Daxx, Topoisomerase I binding RS (Topors), HPC2, UBA2, TDG, and protein inhibitor of activated STAT (signal transducer and activator of transcription) (PIAS)-1, -3, and -y These proteins are either structurally or functionally associated with promyelocytic leukemia nuclear bodies (PML-NBs), protein sumoylation, or the regulation of transcription. The interactions of CGI-55 with Daxx, Topors, PIASy and UBA2 were confirmed by in vivo co-localization experiments in HeLa cells, by using green (GFP) and red fluorescence fusion proteins. A mapping study of the CGI-55 binding site for these proteins revealed three distinct patterns of interaction. The fact that CGI-55-GFP has been localized in cytoplasm and nucleus in a dotted manner, and its interaction with proteins associated with PML-NBs, suggested that CGI-55 might be associated with nuclear bodies. Although Daxx and Topors co-localized with promyelocytic leukemia protein (PML), CGI-55 itself as well as PIASy and UBA2 showed only little co-localization with PML. However, we observed that CGI-55 localizes to the nucleolus and co-localizes with p80-coilin positive nuclear-coiled bodies. © Copyright 2006 by Humana Press Inc. All rights of any nature whatsoever reserved.
dc.description44
dc.description3
dc.description463
dc.description474
dc.descriptionKobarg, J., Schnittger, S., Fonatsch, C., Characterization, mapping and partial cDNA sequence of the 57-kDa intracellular Ki-1 antigen (1997) Exp. Clin. Immunogenet., 14, pp. 273-280
dc.descriptionLemos, T.A., Passos, D.O., Nery, F.C., Kobarg, J., Characterization of a new family of proteins that interact with the C-terminal region of the chromatin-remodeling factor CHD-3 (2003) FEBS Lett., 533, pp. 14-20
dc.descriptionHeaton, J.H., Dlakic, W.M., Dlakic, M., Gelehrter, T.D., Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the type-1 plasminogen activator inhibitor mRNA (2001) J. Biol. Chem., 276, pp. 3341-3347
dc.descriptionHuang, L., Grammatikakis, N., Yoneda, M., Banerjee, S.D., Toole, B.P., Molecular characterization of a novel intracellular hyaluronan-binding protein (2000) J. Biol. Chem., 275, pp. 29,829-29,839
dc.descriptionNery, F.C., Passos, D.O., Garcia, V.S., Kobarg, J., Ki-1/57 interacts with RACK1 and is a substrate for PMA activated PKC (2004) J. Biol. Chem., 279, pp. 11,444-11,455
dc.descriptionOzaki, T., Watanabe, K.-I., Nakagawa, T., Miyazaki, K., Takahashi, M., Nakagawara, A., Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB (2003) Oncogene, 22, pp. 3231-3242
dc.descriptionMatera, A.G., Nuclear bodies: Multifaceted subdomains of the interchromatin space (1999) Trends Cell Biol., 9, pp. 302-309
dc.descriptionAndrade, L.E.C., Tan, E.M., Chan, E.K.L., Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation (1993) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 1947-1951
dc.descriptionOgg, S.C., Lamond, A.I., Cajal bodies and coilin-moving towards function (2002) J. Cell Biol., 14, pp. 17-21
dc.descriptionZhong, S., Salomoni, P., Pandolfi, P., The transcriptional role of PML and the nuclear body (2000) Nat. Cell Biol., 2, pp. E85-E90
dc.descriptionRasheed, Z.A., Saleem, A., Ravee, Y., Pandolfi, P.P., Rubin, E.H., The topoisomerase I-binding RING protein, topors, is associated with promyelocytic leukemia nuclear bodies (2002) Exp. Cell Res., 277, pp. 152-160
dc.descriptionSalomoni, P., Pandolfi, P.P., The role of PML in tumor suppression (2002) Cell, 108, pp. 165-170
dc.descriptionEverett, R.D., Lomonte, P., Sternsdorf, T., Van Driel, R., Orr, A., Cell cycle regulation of PML modification and ND10 composition (1999) J. Cell Sci., 112, pp. 4581-4588
dc.descriptionZhong, S., Müller, S., Ronchetti, S., Freemont, P.S., Dejean, A., Pandolfi, P.P., Role of SUMO-1-modified PML in nuclear body formation (2000) Blood, 95, pp. 2748-2752
dc.descriptionBorden, K.L., Pondering the promyelocytic leukemia protein (PML) puzzle: Possible functions from PML nuclear bodies (2002) Mol. Cell. Biol., 22, pp. 5259-5269
dc.descriptionSterndorf, T., Jensen, K., Will, H., Evidence for covalent modification of the nuclear dot-associated proteins PML and SP100 by PIC1/SUMO1 (1997) J. Cell Biol., 139, pp. 1621-1634
dc.descriptionIshov, A.M., Sotnikov, A.G., Negorev, D., PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1 (1999) J. Cell Biol., 147, pp. 221-234
dc.descriptionFields, S., Song, O., A novel genetic system to detect protein-protein interactions (1989) Nature, 340, pp. 245-246
dc.descriptionVojtek, A.B., Hollenberg, S.M., Ras-Raf interaction: Two-hybrid analysis (1995) Methods Enzymol., 255, pp. 331-342
dc.descriptionMoraes, K.C., Quaresma, A.J., Maehnss, K., Kobarg, J., Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D) (2003) Biol. Chem., 384, pp. 35-37
dc.descriptionSchmidt, D., Müller, S., Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 2872-2877
dc.descriptionKotaja, N., Karvonen, U., Janne, O.A., Palvimo, J.J., PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases (2002) Mol. Cell Biol., 22, pp. 5222-5234
dc.descriptionMüller, S., Matunis, M.J., Dejean, A., Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus (1998) EMBO J., 17, pp. 61-70
dc.descriptionValdez, B.C., Henning, D., Perlaky, L., Busch, R.K., Busch, H., Cloning and characterization of Gu/RH-II binding protein (1997) Biochem. Biophys. Res. Commun., 234, pp. 335-340
dc.descriptionMiyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., Yasuda, H., Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes (2002) J. Biol. Chem., 277, pp. 50,131-50,136
dc.descriptionHaluska Jr., P., Saleem, A., Rasheed, Z., Interaction between human topoisomerase I and a novel RING-finger/arginine-serine protein (1999) Nucleic Acids Res., 27, pp. 2538-2544
dc.descriptionZhou, R., Wen, H., Ao, S.Z., Identification of a novel gene encoding a p53-associated protein (1999) Gene, 235, pp. 93-101
dc.descriptionRechsteiner, M., Rogers, S.W., PEST sequences and regulation by proteolysis (1996) Trends Biochem. Sci., 21, pp. 267-271
dc.descriptionTorii, S., Egan, D.A., Evans, R.A., Reed, J.C., Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs) (1999) EMBO J., 18, pp. 6037-6049
dc.descriptionLi, R., Pei, H., Watson, D.K., Papas, T.S., EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes (2000) Oncogene, 19, pp. 745-753
dc.descriptionKo, Y.G., Kang, Y.S., Park, H., Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm (2001) J. Biol. Chem., 276, pp. 39,103-39,106
dc.descriptionLin, D.Y., Lai, M.Z., Ann, D.K., Shih, H.M., Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by Sequestering Daxx to the PML oncogenic domains (PODs) to enhance its trans-activation potential (2003) J. Biol. Chem., 278, pp. 15,958-15,965
dc.descriptionShih, H.P., Hales, K.G., Pringle, J.R., Peifer, M., Identification of septin-interacting proteins and characterization of the Smt3/SUMO-conjugation system in Drosophila (2002) J. Cell Sci., 115, pp. 1259-1271
dc.descriptionChu, D., Kakazu, N., Gorrin-Rivas, M.J., Cloning and characterization of LUN, a novel ring finger protein that is highly expressed in lung and specifically binds to a palindromic sequence (2001) J. Biol. Chem., 276, pp. 14,004-14,013
dc.descriptionYang, X., Khosravi-Far, R., Chang, H.Y., Baltimore, D., Daxx, a novel Fas-binding protein that activates JNK and apoptosis (1997) Cell, 89, pp. 1067-1076
dc.descriptionEmelyanov, A.V., Kovac, C.R., Sepulveda, M.A., Birshtein, B.K., The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells (2002) J. Biol. Chem., 277, pp. 11,156-11,164
dc.descriptionPluta, A.F., Earnshaw, W.C., Goldberg, I.G., Interphase-specific association of intrinsic centromer protein CENP-C with Daxx, a death domain-binding protein implicated in Fas-mediated cell death (1998) J. Cell. Sci., 111, pp. 2029-2041
dc.descriptionSatijn, D.P., Olson, D.J., Van Der Vlag, J., Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis (1997) Mol. Cell Biol., 17, pp. 6076-6086
dc.descriptionLiu, B., Liao, J., Rao, X., Inhibition of Stat1-mediated gene activation by PIAS1 (1998) Proc. Nat. Acad. Sci. U.S.A., 95, pp. 10,626-10,631
dc.descriptionKahyo, T., Nishida, T., Yasuda, H., Involvement of PIAS1 in the sumoylation of tumor suppressor p53 (2001) Mol. Cell, 8, pp. 713-718
dc.descriptionJackson, P.K., A new RING for SUMO: Wrestling transcriptional responses into nuclear bodieswith PIAS family E3 SUMO ligases (2001) Genes Dev., 15, pp. 3053-3058
dc.descriptionDesterro, J.M., Rodríguez, M.S., Kemp, G.D., Hay, R.T., Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1 (1999) J. Biol. Chem., 274, pp. 10,618-10,624
dc.descriptionGong, L., Li, B., Millas, S., Yeh, E.T., Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex (1999) FEBS Lett., 448, pp. 185-189
dc.descriptionOkuma, T., Honda, R., Ichikawa, G., Tsumagari, N., Yasuda, H., In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2 (1999) Biochem. Biophys. Res. Commun., 254, pp. 693-698
dc.descriptionRodriguez, M.S., Desterro, J.M., Lían, S., Midgley, C.A., Lane, D.P., Hay, R.T., SUMO-1 modification activates the transcriptional response of p53 (1999) EMBO J., 18, pp. 6455-6461
dc.descriptionNeddermann, P., Gallinari, P., Lettieri, T., Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase (1996) J. Biol. Chem., 271, pp. 12,767-12,774
dc.descriptionLindahl, T., DNA repair enzymes (1982) Annu. Rev. Biochem., 51, pp. 61-87
dc.descriptionHardeland, U., Steinacher, R., Jiricny, J., Schär, P., Modification of the human tymine-DNA-glycosylase by ubiquitin-like proteins facilitates enzymatic turnover (2002) EMBO J., 21, pp. 1456-1464
dc.descriptionTakahashi, H., Hatakeyama, S., Saitoh, H., Nakayama, K.I., Noncovalent SUMO-1 binding of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein (PML) (2005) J. Biol. Chem., 280, pp. 5611-5621
dc.descriptionBoddy, M.N., Howe, K., Etkin, L.D., Solomon, E., Freemont, P.S., PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia (1996) Oncogene, 13, pp. 971-982
dc.descriptionLong, J., Matsura, I., He, D., Wang, G., Shuai, K., Liu, F., Repression of SMAD transcriptional activity by PIASy, an inhibitor of activated STAT (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 9791-9796
dc.languageen
dc.publisher
dc.relationCell Biochemistry and Biophysics
dc.rightsfechado
dc.sourceScopus
dc.titleCgi-55 Interacts With Nuclear Proteins And Co-localizes To P80-coilin Positive-coiled Bodies In The Nucleus
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución