dc.creatorHirata G.A.M.
dc.creatorBernardo A.
dc.creatorMiranda E.A.
dc.date2012
dc.date2015-06-26T20:29:29Z
dc.date2015-11-26T14:26:02Z
dc.date2015-06-26T20:29:29Z
dc.date2015-11-26T14:26:02Z
dc.date.accessioned2018-03-28T21:28:54Z
dc.date.available2018-03-28T21:28:54Z
dc.identifier
dc.identifierChemical Engineering And Processing: Process Intensification. , v. 56, n. , p. 29 - 33, 2012.
dc.identifier2552701
dc.identifier10.1016/j.cep.2012.03.001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84860886633&partnerID=40&md5=58bd98cc53f056614936588412670b37
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97050
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97050
dc.identifier2-s2.0-84860886633
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1245949
dc.descriptionCrystallization is controlled by two steps that determine the quality and the final size of the product, nucleation and growth, which are functions of supersaturation. Recently, Hirata et al. [1] crystallized insulin using CO 2 as a volatile acid to impose supersaturation on the system. The objective of the present work was to determine the growth kinetics of insulin crystallization in 50mM NaHCO 3 solution with 0.4mM ZnCl 2 in a CO 2 atmosphere at 15°C, adjusting the parameters of the equation G=k g×S g to the experimental data. The solubility of insulin in the NaHCO 3/CO 2/ZnCl 2 system at 15°C was determined as a function of pH in the range of 6.30-7.34. The crystal growth data allowed determination of the growth order " g" (g=2.9). Although protein crystallization has some features that differ from the crystallization of less complex molecules, the apparent growth kinetics of insulin were successfully analyzed here with the same empirical methods used for small molecules, which can easily be scaled up for industrial applications to achieve specific size and purity, the goals of industrial crystallization. The method used in this work is a useful tool for describing and simplifying optimization of industrial protein crystallization processes. © 2012 Elsevier B.V.
dc.description56
dc.description
dc.description29
dc.description33
dc.descriptionHirata, G.A.M., Bernardo, A., Miranda, E.A., Crystallization of porcine insulin with carbon dioxide as acidifying agent (2010) Powder Technol., 197, pp. 54-57
dc.descriptionChernov, A.A.J., Protein crystals and their growth (2003) Struct. Biol., 142, pp. 3-21
dc.descriptionGarcia, E., Veesle, S., Boistelle, R., Hoff, C., Crystallization and dissolution of pharmaceutical compounds: an experimental approach (1999) J. Cryst. Growth, pp. 1360-1364
dc.descriptionYu Shekunov, B., York, P., Crystallization processes in pharmaceutical technology and drug delivery design (2000) J. Cryst. Growth, 211, pp. 122-136
dc.descriptionCheng, Y.C., Lobo, R.F., Sandler, S.I., Lenhoff, A.M., Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions (2005) Biotechnol. Bioeng., 94, pp. 177-188
dc.descriptionKhorshid, N., Hossain, M.M., Farid, M., Precipitation of food protein using high pressure carbon dioxide (2007) J. Food Eng., 79, pp. 1214-1220
dc.descriptionJordan, P.J., Lay, K., Ngan, N., Rodley, G.F., Casein precipitation using high pressure CO 2 (1987) New Zeal. J. Dairy Sci., 22, pp. 247-256
dc.descriptionHofland, G.W., de Rijke, A., Thiering, R., van der Wielen, L.A.M., Witkamp, G.J., Isoelectric precipitation of soybean protein using carbon dioxide as a volatile acid (2000) J. Chromatogr. B, 743, pp. 357-368
dc.descriptionThiering, R., Hofland, G., Foster, N., Witkamp, G.J., van der Wielen, L.A.M., Fractionation of soybean proteins with pressurized carbon dioxide as a volatile electrolyte (2001) Biotechnol. Bioeng., 73, pp. 1-11
dc.descriptionTashima, A.K., Ottens, M., van der Wielen, L.A.M., Cyntra, D.E., Pauli, J.R., Pessôa Filho, P.A., Miranda, E.A., Precipitation of porcine insulin with carbon dioxide (2009) Biotechnol. Bioeng., 103, pp. 909-919
dc.descriptionCrowfoot, D., X-ray single crystal photographs of insulin (1935) Nature, 135, pp. 591-592
dc.descriptionDodson, E.J., Dodson, G.G., Lewitova, A., Sabesan, M., Zinc-free cubic pig insulin: crystallization and structure determination (1978) J. Mol. Biol., 125, pp. 387-396
dc.descriptionLadisch, M.R., (2001) Bioseparations Engineering: Principles, Practice, and Economics, , Wiley-Interscience, New York
dc.descriptionSakabe, N., Sakabe, K., Sasaki, K., X-ray studies of water structure in 2 Zn insulin crystal (1985) J. Bioscience., 8, pp. 45-55
dc.descriptionSchlichtkrull, J., Insulin crystals. II. Shape of rhombohedral Zn-insulin crystals in relation to species and crystallization media (1956) Acta Chem. Scand., 10, pp. 1459-1464
dc.descriptionWintersteiner, O., Abramson, H.A., The isoelectric point of insulin: electrical properties of adsorbed and crystalline insulin (1933) J. Biol. Chem., 99, pp. 741-753
dc.descriptionYip, C.M., Defelippis, M.R., Frank, B.H., Brader, M.L., Ward, M.D., Structural and morphological characterization of ultralente insulin crystals by atomic force microscopy: evidence of hydrophobically driven assembly (1998) Biophys. J., 75, pp. 1172-1179
dc.descriptionNorrman, M., Schluckebier, G., Crystallographic characterization of two novel crystal forms of human insulin induced by chaotropic agents and a shift in pH (2007) BMC Struct. Biol., 7, pp. 1-14
dc.descriptionChausmer, A.B., Zinc, insulin and diabetes (1998) JACN, 17, pp. 109-115
dc.descriptionBrown, L.R., Glucose-mediated insulin delivery from implantable polymers (2002) Polymeric Biomaterials, pp. 1101-1116. , Marcel Dekker, New York, S. Dumitriu (Ed.)
dc.descriptionSchlichtkrull, J., Insulin crystals. IV. The nucleation and growth of insulin crystals (1957) Acta Chem. Scand., 11, pp. 439-460
dc.descriptionSchlichtkrull, J., The growth of insulin crystals (1957) Acta Chem. Scand., 11, pp. 1248-1256
dc.descriptionBradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
dc.descriptionMyerson, A.S., (2002) Handbook of Industrial Crystallization, , Butterworth-Heinemann, Woburn
dc.descriptionAsherie, N., Protein crystallization and phase diagrams (2004) Methods, 34, pp. 266-272
dc.descriptionMcPherson, A., (1999) Crystallization of biological macromolecules, , Cold Spring Harbor, New York
dc.descriptionPusey, M.L., Snyder, R.S., Naumann, R., Protein crystal growth: growth kinetics for tetragonal lysozyme crystals (1986) J. Biol. Chem., 261, pp. 6524-6529
dc.descriptionMersmann, A., Kind, M., Chemical engineering aspects of precipitation from solution (1988) Chem. Eng. Technol., 11, pp. 264-276
dc.descriptionChen, Y.H., Kim, K.J., Kim, S.H., A study on crystallization kinetics of pentaerythritol in a batch cooling crystallizer (2005) Chem. Eng. Sci., 60, pp. 4791-4802
dc.descriptionChen, P.C., Kou, K.L., Tai, H.K., Jin, S.L., Lye, C.L., Lin, C.Y., Removal of carbon dioxide by reactive crystallization in a scrubber - kinetics of barium carbonate crystals (2002) J. Cryst. Growth, pp. 2166-2171
dc.descriptionRosenberger, F., Inorganic and protein crystal growth - Similarities and differences (1986) J. Cryst. Growth, 76, pp. 618-636
dc.languageen
dc.publisher
dc.relationChemical Engineering and Processing: Process Intensification
dc.rightsfechado
dc.sourceScopus
dc.titleDetermination Of Crystal Growth Rate For Porcine Insulin Crystallization With Co 2 As A Volatile Acidifying Agent
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución