dc.creatorJaimes Suárez, Oslen Dilayder
dc.creatorRincón, Isabel Cristina
dc.creatorPeña Pedraza, Heriberto
dc.date.accessioned2019-01-31T20:51:44Z
dc.date.available2019-01-31T20:51:44Z
dc.date.created2019-01-31T20:51:44Z
dc.date.issued2018-07-04
dc.identifierJaimes Suárez, O. D., Rincón, I. C., & Peña Pedraza, H. (2018). Método de la correlación en un cristal de ZnO. Ciencia en Desarrollo, 9(2), 57-67. https://doi.org/10.19053/01217488.v9.n2.2018.8753. http://repositorio.uptc.edu.co/handle/001/2370
dc.identifier2462-7658
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/2370
dc.identifier10.19053/01217488.v9.n2.2018.8753
dc.description.abstractLa predicción de los modos de vibración de las moléculas o estructuras cristalinas basados en sus propiedades de simetría, nos permiten utilizar un poderoso método para caracterizar nuevos materiales. En el siguiente trabajo, se realizó el análisis modal teórico por medio del método de correlación, y se obtuvo los modos de vibración Raman opticamente activos para un sistema cristalino con estructura de tipo Hexagonal Wurzita. Utilizando la técnica de espectroscopia Raman, se registró el espectro de vibración Raman Stokes para un cristal de ZnO. A partir del análisis teórico y del espectro Raman registrado experimentalmente para el ZnO, se pudo observar y comparar el método teórico (método de correlación) con el experimental (técnica de espectroscopia Raman). Este análisis, sugiere que el método de correlación es preciso en la predicción de los modos de vibración de cualquier red cristalina, sin embargo, su poder se puede extender al usarse conjuntamente con los datos experimentales Raman en la caracterización de la calidad cristalina y estructural de nuevos materiales de interés tecnológico.
dc.description.abstractThe prediction of vibrational modes of the crystalline molecules or structures based on their properties of symmetry, allow us to use a powerful method to characterize new materials. In this work, the theoretical modal analysis was performed by the correlation method, and the optically active Raman vibration modes were obtained for a crystalline system with hexagonal Wurzite type structure. Using the Raman spectroscopy technique, the Raman Stokes vibration spectrum was obtained for a ZnO crystal. From the theoretical analysis and the experimentally recorded Raman spectrum for ZnO, it was possible to observe and compare the theoretical method (correlation method) with the experimental method (Raman spectroscopy technique). This analysis suggests that the correlation method is accurate in predicting the modes of vibration of any crystal lattice, which can be used in conjunction with the Raman experimental data in characterizing the crystalline and structural quality of new materials of technological interest.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.relationC.J Youn, T.S Jeong, M.S Han, J.H Kim, Optical properties of Znterminated ZnO bulk. Journal of Crystal Growth, Volume 261, Issue 4, Pages 526-532, 2004.
dc.relationD. C. Look, Recent Advances in ZnO Material and Devices, Materials Science and Engineering: B, Vol. 80, No. 1, pp. 383-387. doi:10.1016/S0921-5107(00)00604-8, 2001.
dc.relationR. S. Wagner and W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters, Vol. 4, No. 5, pp. 89-90. doi:10.1063/1.1753975, 1994
dc.relationImprovement of crystallinity of ZnO thin film and electrical characteristics of film bulk acoustic wave resonator by using Pt buffer layer. Vacuum, Volume 74, Issues 3–4, Pages 689-692, 2004.
dc.relationY. Polyakov, A.V. Govorkov, N.B. Smirnov, N.V. Pashkova, S.J. Pearton, K. Ip, R.M. Frazier, C.R. Abernathy, D.P. Norton, J.M. Zavada, R.G. Wilson, Y. Li, G. W. Meng, L. D. Zhang and F., Optical and magnetic properties of ZnO bulk crystals implanted with Cr and Fe. Materials Science in Semiconductor Processing, Volume 7, Issues 1–2, Pages 77-81, 2004.
dc.relationG. Tobin, E. McGlynn, M.O. Henry, J.P. Mosnier, J.G. Lunney, D. O’Mahony, E. de Posada, Ultraviolet stimulated emission from bulk and polycrystalline ZnO thin films with varying grain sizes Physica B: Condensed Matter, Volumes 340–342, Pages 245-249, 2003.
dc.relationSemiconductor ZnO Nanowires Arrays and Their Photoluminescence Properties, Applied Physics Letters, Vol. 76, No. 15, pp. 2011-2013. doi:10.1063/1.126238, 2000.
dc.relationY. Xia, P. Yang, Y. Sun. Yin, F. Kim and H. Yan, “One Dimensional Nanostructures; Synthesis, Characterization, and Applications,” Advanced Materials, Vol. 15, No. 5, pp. 353-389. doi:10.1002/adma.200390087, 2003.
dc.relationMetal Oxides: Chemistry Applications. Fie rro, J. L. G. CRC Press. p. 182. ISBN 0824723716, 2006.
dc.relationRan Cai, Jiagen Wu, Li Sun y Yanjun Liu, 3D graphene/ZnO composite with enhanced photocatalytic activity, Materials and Design, 90, pags. 839–844 , 2016.
dc.relationYu-Tsui Chang, Jui-Yuan Chen, Tzu-Ping Yang, Chun-Wei Huang, Chung-Hua Chiu, Ping-Hung Yeh y Wen-Wei Wu, Excellent pie-zoelectric and electrical properties of lithiumdoped ZnO nanowires for nanogenerator applications, Nano Energy, 8, pags. 291-296 , 2014
dc.relationKhalaf Al Abdullah, Sahar Awad, Jean Zaraket and Chafic Salame, Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural y Electrical Properties at Different Temperature, Energy Procedia, volume 119, pages 565 - 570, International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES17, 21-24 April 2017, Beirut Lebanon, issn 1876-6102, doi 10.1016/j.egypro.2017.07.080, 2017.
dc.relationO.F. Kolomys, V.V. Strelchuk, S.V. Rarata, R. Hayn, A. Savoyant, F. Giovannelli, F. Delorme, V.Tkach, Optical and structural properties of individual Codoped ZnO microwires, Superlattices and Microstructures, Available online 5 April 2018, ISSN 0749-6036, https://doi.org/10.1016/j.spmi.2018.04.005, 2018
dc.relationNorton et al.; Chopra et al., 1983; Dayan et al., 1998, Kiriakidis y Katsakaris, 2004.
dc.relationS. Bhagavantam y T. Venkavantam, Theory of groups and its application to physical problems, 1962.
dc.relationWilliam G. Fateley y Francis R. Dollish, Infrared and Raman Selection Rules for Molécular and Lattice Vibrations: The Co-rrelation Method, WILEY-INTERSGIENCE, pags. 177, 1972.
dc.relationMarius Millot, Ramon Tena-Zaera , Vicen te Munoz-Sanjose, Jean-Marc Broto y Jesus Gonzalez Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy, APPLIED PHYSICS LETTERS, 96, https:// doi.org/10.1063/1.3387843, 2010.
dc.relationhttp://www.originlab.com.
dc.relationA. W. Hewat, Solid State Commun. 8,187, 1970
dc.relationCiencia en Desarrollo;Volumen 9, número 2 (Julio-Diciembre 2018)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8753/7260
dc.titleMétodo de la correlación en un cristal de ZnO
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución