dc.creatorLacerda Junior
dc.creatorGileno V.; Noronha
dc.creatorMelline F.; de Sousa
dc.creatorSanderson Tarciso P.; Cabral
dc.creatorLucelia; Domingos
dc.creatorDaniela F.; Saber
dc.creatorIrian L.; de Melo
dc.creatorItamar S.; Oliveira
dc.creatorValeria M.
dc.date2017
dc.datefev
dc.date2017-11-13T13:54:57Z
dc.date2017-11-13T13:54:57Z
dc.date.accessioned2018-03-29T06:08:26Z
dc.date.available2018-03-29T06:08:26Z
dc.identifierFems Microbiology Ecology. Oxford Univ Press, v. 93, p. , 2017.
dc.identifier0168-6496
dc.identifier1574-6941
dc.identifierWOS:000397431300019
dc.identifier10.1093/femsec/fiw248
dc.identifierhttps://academic.oup.com/femsec/article-abstract/93/2/fiw248/2701679/Potential-of-semiarid-soil-from-Caatinga-biome-as?redirectedFrom=fulltext
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/329540
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1366565
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe litterfall is the major organic material deposited in soil of Brazilian Caatinga biome, thus providing the ideal conditions for plant biomass-degrading microorganisms to thrive. Herein, the phylogenetic composition and lignocellulose-degrading capacity have been explored for the first time from a fosmid library dataset of Caatinga soil by sequence-based screening. A complex bacterial community dominated by Proteobacteria and Actinobacteria was unraveled. SEED subsystems-based annotations revealed a broad range of genes assigned to carbohydrate and aromatic compounds metabolism, indicating microbial ability to utilize plant-derived material. CAZy-based annotation identified 7275 genes encoding 37 glycoside hydrolases (GHs) families related to hydrolysis of cellulose, hemicellulose, oligosaccharides and other lignin-modifying enzymes. Taxonomic affiliation of genes showed high genetic potential of the phylum Acidobacteria for hemicellulose degradation, whereas Actinobacteria members appear to play an important role in celullose hydrolysis. Additionally, comparative analyses revealed greater GHs profile similarity among soils as compared to the digestive tract of animals capable of digesting plant biomass, particularly in the hemicellulases content. Combined results suggest a complex synergistic interaction of community members required for biomass degradation into fermentable sugars. This large repertoire of lignocellulolytic enzymes opens perspectives for mining potential candidates of biochemical catalysts for biofuels production from renewable resources and other environmental applications.
dc.description93
dc.description2
dc.descriptionSao Paulo State Research Foundation (FAPESP) [2013/09386-9]
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageEnglish
dc.publisherOxford Univ Press
dc.publisherOxford
dc.relationFEMS Microbiology Ecology
dc.rightsfechado
dc.sourceWOS
dc.subjectMetagenomics - Community Genomics
dc.subjectCaatinga Soil
dc.subjectLignocellulose Degradation
dc.subjectBiofuels
dc.subjectBioinformatics
dc.titlePotential Of Semiarid Soil From Caatinga Biome As A Novel Source For Mining Lignocellulose-degrading Enzymes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución