dc.creatorHirata, GAM
dc.creatorBernardo, A
dc.creatorMiranda, EA
dc.date2012
dc.dateJUN
dc.date2014-07-30T14:39:02Z
dc.date2015-11-26T16:42:50Z
dc.date2014-07-30T14:39:02Z
dc.date2015-11-26T16:42:50Z
dc.date.accessioned2018-03-28T23:27:34Z
dc.date.available2018-03-28T23:27:34Z
dc.identifierChemical Engineering And Processing. Elsevier Science Sa, v. 56, n. 29, n. 33, 2012.
dc.identifier0255-2701
dc.identifierWOS:000305200500004
dc.identifier10.1016/j.cep.2012.03.001
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/61369
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/61369
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1273398
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCrystallization is controlled by two steps that determine the quality and the final size of the product, nucleation and growth, which are functions of supersaturation. Recently, Hirata et al. [1] crystallized insulin using CO2 as a volatile acid to impose supersaturation on the system. The objective of the present work was to determine the growth kinetics of insulin crystallization in 50 mM NaHCO3 solution with 0.4 mM ZnCl2 in a CO2 atmosphere at 15 degrees C, adjusting the parameters of the equation G = k(g) x S-g to the experimental data. The solubility of insulin in the NaHCO3/CO2/ZnCl2 system at 15 degrees C was determined as a function of pH in the range of 6.30-7.34. The crystal growth data allowed determination of the growth order "g" (g = 2.9). Although protein crystallization has some features that differ from the crystallization of less complex molecules, the apparent growth kinetics of insulin were successfully analyzed here with the same empirical methods used for small molecules, which can easily be scaled up for industrial applications to achieve specific size and purity, the goals of industrial crystallization. The method used in this work is a useful tool for describing and simplifying optimization of industrial protein crystallization processes. (C) 2012 Elsevier B.V. All rights reserved.
dc.description56
dc.description29
dc.description33
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Science Sa
dc.publisherLausanne
dc.publisherSuíça
dc.relationChemical Engineering And Processing
dc.relationChem. Eng. Process.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectCrystallization
dc.subjectCO2
dc.subjectGrowth crystal
dc.subjectInsulin
dc.subjectProtein
dc.subjectPressure Carbon-dioxide
dc.subjectX-ray
dc.subjectPrecipitation
dc.subjectKinetics
dc.subjectZinc
dc.titleDetermination of crystal growth rate for porcine insulin crystallization with CO2 as a volatile acidifying agent
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución