dc.creatorVidal B.D.C.
dc.date2011
dc.date2015-06-30T20:42:06Z
dc.date2015-11-26T14:53:54Z
dc.date2015-06-30T20:42:06Z
dc.date2015-11-26T14:53:54Z
dc.date.accessioned2018-03-28T22:05:46Z
dc.date.available2018-03-28T22:05:46Z
dc.identifier
dc.identifierMicron. , v. 42, n. 8, p. 801 - 807, 2011.
dc.identifier9684328
dc.identifier10.1016/j.micron.2011.04.006
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80051593632&partnerID=40&md5=03e14140066a45d365251c546c30b50b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108933
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108933
dc.identifier2-s2.0-80051593632
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255031
dc.descriptionWings of the butterflies Morpho aega and Eryphanis reevesi were investigated in the present study by fluorescence, polarization and infra-red (IR) spectroscopic microscopy with the aim of identifying the oriented organization of their components and morphological details of their substructures. These wings were found to exhibit a strong iridescent glow depending on the angle of the incident light; their isolated scales exhibited blue fluorescence. Parallel columns or ridges extend from the pad and sockets to the dented apical scale's region, and they are perpendicular to the ribs that connect the columnar ridges. The scales reveal linear dichroism (LD) visually, when attached on the wing matrix or isolated on slides. The LD was inferred to be textural and positive and was also demonstrated with IR microscopy. The scale columns and ribs are birefringent structures. Images obtained before and after birefringence compensation allowed a detailed study of the scale morphology. Form and intrinsic birefringence findings here estimated and discussed in the context of nonlinear optical properties, bring to the level of morphology the state of molecular order and periodicity of the wing structure. FT-IR absorption peaks were found at wavenumbers which correspond to symmetric and asymmetric (-N-H) stretching, symmetric (-C-H) stretching, amide I (-C. O) stretching, amide II(-N-H), and β-linking. Based on LD results obtained with polarized IR the molecular vibrations of the wing scales of M. aega and E. reevesi are assumed to be oriented with respect to the long axis of these structures. © 2011 Elsevier Ltd.
dc.description42
dc.description8
dc.description801
dc.description807
dc.descriptionArgyros, A., Manos, S., Large, M.C.J., McKenzie, D.R., Cox, G.C., Dwarte, D.M., Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale (2002) Micron, 33, pp. 483-487
dc.descriptionBêche, B., Gaviot, E., Matrix formalism to enhance the concept of effective dielectric constant (2003) Opt. Commun., 219, pp. 15-19
dc.descriptionBennet, S., The microscopical investigation of biological materials with polarized light (1967) MacClung's Handbook of Microscopical Technique, pp. 591-677. , Hafner Publ. Co., New York, R.M. Jones (Ed.)
dc.descriptionBrunner, E., Ehrlich, H., Schupp, P., Hedrich, R., Hunoldt, S., Kammer, M., Machill, S., Born, R., Chitin based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta (2009) J. Struct. Biol., 168, pp. 539-547
dc.descriptionCarvalho, H.F., Vidal, B.C., Macromolecular organization of the chitin system of the pen in Loligo brasiliensis (1991) Zool. Jb. Anat., 121, pp. 39-52
dc.descriptionCassim, J.Y., Taylor, E.W., Intrinsic birefringence of poly-γ-benzyl-l-glutamate, a helical polypeptide, and theory of birefringence (1965) Biophys. J., 5, pp. 531-552
dc.descriptionChen, Y., Gu, J.J., Zhu, S.M., Fan, T.X., Zhang, D., Guo, Q.X., Iridescent large-area ZrO2 photonic crystals using butterfly as templates (2009) Appl. Phys. Lett., 94, p. 053901
dc.descriptionDiener, J., Künzner, N., Kovalev, D., Gross, E., Timoshenko, V.Y., Polisski, G., Koch, F., Dichroic Bragg reflectors based on birefringent porous silicon (2001) Appl. Phys. Lett., 78, pp. 3887-3889
dc.descriptionDresp, B., Jouventin, P., Langley, K., Ultraviolet reflecting photonic microstructures in the King Penguin beak (2005) Biol. Lett., 1, pp. 310-313
dc.descriptionFrey-Wyssling, A., (1948) Submicroscopic Morphology of Protoplasm and its Derivatives, pp. 58-68. , Elsevier Publ. Co., New York/Amsterdam/London/Brussels
dc.descriptionGolovan, L.A., Ivanov, D.A., Melnikov, V.A., Timoschenko, V.Y., Zheltikov, A.M., Kashkarov, P.K., Petrov, G.I., Yakovlev, V.V., Form birefringence of oxidized porous silicon (2006) Appl. Phys. Lett., 88, p. 241113
dc.descriptionHarris, K.D., van Popta, A.C., Sit, J.C., Broer, D.J., Brett, M.J., A birefringent and transparent electrical conductor (2008) Adv. Funct. Mater., 18, pp. 2147-2153
dc.descriptionHuang, J.Y., Wang, X.D., Wang, Z.L., Controlled replication of butterfly wings for achieving tunable photonic properties (2006) Nano Lett., 6, pp. 2325-2331
dc.descriptionKotynski, R., Antkowiak, M., Berghmans, F., Thienpont, H., Panajotos, K., Photonic crystal fibers with material anisotropy (2005) Opt. Quantum Electr., 37, pp. 253-264
dc.descriptionKumazawa, K., Tabata, H., A three-dimensional fluorescence analysis of the wing of male Morpho sulkowskyi and Papilio xuthus butterflies (2001) Zool. Sci., 18, pp. 1073-1079
dc.descriptionMatèjková-Plskova, J., Shiojiri, S., Shiojiri, M., Fine structures of wing scales in Sasakia charonda butterflies as photonic crystals (2009) J. Microsc. -Oxford, 236, pp. 88-93
dc.descriptionMitrofanov, A.V., Linik, Y.M., Buczynski, R., Pysz, D., Lorenc, D., Bugar, I., Ivanov, A.A., Zheltikov, A.M., Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: a promising fiber light source for nonlinear Raman microspectroscopy (2006) Opt. Exp., 14, pp. 10645-10651
dc.descriptionNeale, S.L., Macdonald, M.P., Dholakia, K., Krauss, T.F., All-optical control of microfluidic components using form birefringence (2005) Nat. Mater., 4, pp. 530-532
dc.descriptionNeville, A.C., (1975) Biology of the Arthropod Cuticle, pp. 82-88. , Springer-Verlag, New York/Heidelberg/Berlin, 95-96, 179, 336-338
dc.descriptionO, B.H., Choi, C.H., Jo, S.B., Lee, M.W., Park, D.G., Kang, B.G., Kim, S.H., Fainman, Y., Novel form birefringence modeling for an ultracompact sensor in porous silicon films using polarization interferometry (2004) IEEE Photon. Technol. Lett., 16, pp. 1546-1548
dc.descriptionPena, A.M., Boulesteix, T., Dartigalongue, T., Schanne-Klein, M.C., Chiroptical effects in the second harmonic signal of collagens I and IV (2005) J. Am. Chem. Soc., 127, pp. 10314-10322
dc.descriptionPrum, R., Torres, R., Structural coloration of avian skin: convergent evolution of coherently scattering dermal collagen arrays (2003) J. Exp. Biol., 206, pp. 2409-2429
dc.descriptionPrum, R., Quinn, T., Torres, R., Anatomically diverse butterfly scales all produce structural colors by coherent scattering (2006) J. Exp. Biol., 209, pp. 748-765
dc.descriptionShawkey, M.D., Saranathan, V., Pálsdóttir, H., Crum, J., Ellisman, M.H., Auer, M., Prum, R.O., Electron tomography, three-dimensional Fourier analysis and color prediction of a three-dimensional amorphous biophotonic nanostructure (2009) J.R. Soc. Interface, 6, pp. S213-S220
dc.descriptionSchmidt, W.J., (1937) Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma, pp. 22-40. , Verlag von Gebrüder Bornträger, Berlin
dc.descriptionSchmidt, W.J., Keil, A., (1958) Die Gesungen und die Erkrankten Zahngeweve des Menschen und der Wierbeltiere im Polarizationmikroskop, pp. 1-11. , Catl. Hanser Verlag, München
dc.descriptionSkorig, Y.A., Pestov, A.V., Yatluk, Y., Evaluation of various chitin-glucan derivatives from Aspergillus niger as transition metal adsorbents (2010) Bioresour. Technol., 101, pp. 1769-1775
dc.descriptionSudheesh Kumar, P.T., Abhilash, S., Manzoor, K., Nair, S.V., Tamura, H., Jayakumar, R., Preparation and characterization of novel β-chitin/nanosilver composite for wound dressing applications (2010) Carbohydr. Polym., 80, pp. 761-767
dc.descriptionVidal, B.C., The part played by the mucopolysaccharides in the form birefringence of collagen (1965) Protoplasma, 59, pp. 472-479
dc.descriptionVidal, B.C., The part played by proteoglycans and structural glycoproteins in the macromolecular orientation of collagen bundles (1980) Cell. Mol. Biol., 26, pp. 415-421
dc.descriptionVidal, B.C., Evaluation of carbohydrate role in the molecular order of collagen bundles: microphotometric measurements of textural birefringence (1986) Cell Mol. Biol., 32, pp. 527-535
dc.descriptionVidal, B.C., Image analysis of linear dichroism in collagen-nano-silver complexes (2003) Micr. Anal., 97, pp. 21-23
dc.descriptionVidal, B.C., Form birefringence as applied to biopolymer and Inorganic material supraorganization (2010) Biotechnol. Histochem., 85, pp. 365-378
dc.descriptionVidal, B.C., Carvalho, H.F., Chitin molecular order in the chitinous tendon of the grasshopper Spharagenon bolli (1986) Cell. Mol. Biol., 32, pp. 537-543
dc.descriptionVidal, B.C., Joazeiro, P., Electron microscopic determination of silver incorporation in collagen fibers as a model of organic-metal chiral supramolecular structure with optical anisotropic properties (2002) Micron, 33, pp. 507-509
dc.descriptionVidal, B.C., Mello, M.L.S., Optical anisotropy of collagen fibers of rat calcaneal tendon: an approach to spatially resolved supramolecular organization (2010) Acta Histochem., 112, pp. 53-61
dc.descriptionVidal, B.C., Mello, M.L.S., Godo, C., Caseiro Fo, A.C., Abujadi, J.M., Anisotropic properties of silver plus gold-impregnated collagen bundles: ADB and form birefringence curves (1975) Ann. Histochim., 20, pp. 15-26
dc.descriptionVukusic, P., van Hooper, I., Directionally controlled fluorescence emission in butterflies (2005) Science, 310, p. 1151
dc.descriptionWiener, O., Die Theorie des Mischkörper für das Feld der stationären Strömung erste Abhandlung. Die Mittelwerstaze für Kraft, Polarization und Energie (1912) Ab. Math. Klas. Kongl. Sach. Gesel. Wiss., 23, pp. 509-604
dc.descriptionYokohama, I., Okamoto, K., Noda, J., Fiber-optic polarizing beam splitter employing birefringent-fiber coupler (1985) Electron. Lett., 21, pp. 415-416
dc.languageen
dc.publisher
dc.relationMicron
dc.rightsfechado
dc.sourceScopus
dc.titleButterfly Scale Form Birefringence Related To Photonics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución