dc.creatorFortes P.R.
dc.creatorDa Silveira Petruci J.F.
dc.creatorWilk A.
dc.creatorCardoso A.A.
dc.creatorRaimundo I.M.
dc.creatorMizaikoff B.
dc.date2014
dc.date2015-06-25T17:55:36Z
dc.date2015-11-26T14:39:49Z
dc.date2015-06-25T17:55:36Z
dc.date2015-11-26T14:39:49Z
dc.date.accessioned2018-03-28T21:45:42Z
dc.date.available2018-03-28T21:45:42Z
dc.identifier
dc.identifierJournal Of Optics (united Kingdom). Institute Of Physics Publishing, v. 16, n. 9, p. - , 2014.
dc.identifier20408978
dc.identifier10.1088/2040-8978/16/9/094006
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84906962931&partnerID=40&md5=7f528195b0a0bae3ef2d8c30986d4dac
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86872
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86872
dc.identifier2-s2.0-84906962931
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250150
dc.descriptionDesign and analytical performance studies are presented for optimizing a new generation of hollow waveguides suitable for quantitative gas sensing - the so-called substrate-integrated hollow waveguide (iHWG). Taking advantage of a particularly compact Fourier transform infrared spectrometer optimized iHWG geometries are investigated toward the development of a multi-constituent breath analysis tool compatible for usage, e.g., in exhaled mouse breath analysis. Three different iHWG geometries were compared, i.e., straight, meandering one-turn and meandering two-turn waveguide channels aiming at maximizing the related analytical figures-of-merit including the achievable limits of detection for selected exemplary analytes. In addition, efficient coupling of infrared (IR) radiation into straight iHWGs was investigated using integrated optical funnel structures. Calibration functions of butane in nitrogen serving as IR-transparent matrix gas were established and compared for the various iHWG geometries. Given the tidal volume of exhaled breath (EB) samples ranging from a few hundreds of milliliters (human, swine) to a few hundreds of microliters (mouse), it is essential for any given analysis to select an appropriate waveguide geometry and volume yet maintaining (i) a compact footprint ensuring hand-held instrumentation, (ii) modular exchange of the iHWG according to the analysis requirement yet with constant device format, and (iii) enabling inline/online measurement capabilities toward continuous EB diagnostics.
dc.description16
dc.description9
dc.description
dc.description
dc.descriptionIchikawa, R., Katagiri, T., Matsuura, Y., Hollow waveguide with multiple dielectric layer for infrared cavity-ring-down spectroscopy (2013) Proc. SPIE, 8576, p. 85760s
dc.descriptionIchikawa, R., Katagiri, T., Matsuura, Y., Fabrication of low-loss hollow waveguide with multiple dielectric layers for infrared cavity ring-down spectroscopy (2013) Opt. Eng., 52, p. 106104
dc.descriptionSato, S., Katagiri, T., Matsuura, Y., Fabrication method of small-diameter hollow waveguides for terahertz wave (2012) J. Opt. Soc. Am., 29, pp. 3006-3009
dc.descriptionKim, S.-S., Young, C., Vidakovic, B., Gabram-Mendola, S.G.A., Bayer, C.W., Mizaikoff, B., Potential and challenges for mid-infrared sensors in breath diagnostics (2010) IEEE Sensors J., 10, pp. 145-158
dc.descriptionSaggese, S.J., Harrington, J.A., Sigel, G.H., Jr., Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides (1991) Opt. Lett., 16, pp. 27-29
dc.descriptionKozodoy, R.L., Micheels, R.H., Harrington, J.A., Small-bore hollow waveguide infrared absorption cells for gas sensing (1996) Appl. Spectrosc., 50, pp. 415-419
dc.descriptionHarrington, J.A., A review of IR transmitting, hollow waveguides (2000) Fiber Integr. Opt., 19, pp. 211-227
dc.descriptionHarrington, J.A., (2004) Infrared Fiber Optics and Their Applications
dc.descriptionWilk, A., Carter, J.C., Chrisp, M., Manuel, A.M., Mirkarimi, P., Alameda, J.B., Mizaikoff, B., Substrate-integrated hollow waveguides: A new level of integration in mid-infrared gas sensing (2013) Anal. Chem., 85, pp. 11205-11210
dc.descriptionKim, S.-S., Menegazzo, N., Young, C., Chan, J., Carter, C., Mizaikoff, B., Mid-infrared trace gas analysis with single-pass FT-IR hollow waveguide gas sensors (2009) Appl. Spectrosc., 63, pp. 331-337
dc.descriptionYoung, C., Menegazzo, N., Riley, A.E., Martin, J.L., Disko, M.M., Mizaikoff, B., Simultaneous gas phase parts-per-billion detection of benzene, toluene, and xylenes (BTX) in field environments using solid phase micro-extraction enhanced FT-IR based hollow waveguide sensors (2011) Anal. Chem., 83, pp. 6141-6147
dc.descriptionWilk, A., Seichter, F., Kim, S.-S., Tütüncü, E., Vogt, J.A., Wachter, U., Radermacher, P., Mizaikoff, B., Toward the quantification of the 13CO2/12CO2 ratio in exhaled mouse breath with mid-infrared hollow waveguide gas sensors (2012) Anal. Bioanal. Chem., 402, pp. 397-404
dc.descriptionSilveira Petruci, J.F., Fortes, P.R., Kokoric, V., Wilk, A., Raimundo, I.M., Jr., Cardoso, A.A., Mizaikoff, B., Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors (2013) Sci. Rep., 3, p. 3174
dc.descriptionSilveira Petruci, J.F., Fortes, P.R., Kokoric, V., Wilk, A., Raimundo, I.M., Jr., Cardoso, A.A., Mizaikoff, B., Monitoring hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time (2014) Analyst, 139, pp. 198-203
dc.descriptionFortes, P.R., Combined sensing platform for advanced diagnostics in exhaled mouse breath (2013) Proc. SPIE, 8570
dc.descriptionCroitoru, N.I., Inberg, A., Oksman, M., Ben-David, M., Shefer, A., Hollow silica, metal, and plastic waveguides for hard-tissue medical applications (1997) Proc. SPIE, 2977, pp. 30-35
dc.descriptionYoung, C., Kim, S.-S., Luzinova, Y., Weida, M., Arnone, D., Takeuchi, E., Day, T., Mizaikoff, B., External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection (2009) Sensors Actuators, 140, pp. 24-28
dc.descriptionYoung, C., Menegazzo, N., Riley, A.E., Brons, C.H., Disanzo, F.P., Givens, J.L., Martin, J.L., Mizaikoff, B., Infrared hollow waveguide sensors for simultaneous gas phase detection of benzene, toluene, and xylenes in field environments (2011) Anal. Chem., 83, pp. 6141-6147
dc.descriptionKrammer, H., Propagation of modes in-curved hollow metallic waveguides for the infrared (1977) Appl. Opt., 16, pp. 2163-2165
dc.descriptionPhillips, M., Herrera, J., Krishnan, S., Zain, M., Greenberg, J., Cataneo, R.N., Variation in volatile organic compounds in the breath of normal humans (1999) J. Chromatogr., 729, pp. 75-88
dc.descriptionPhillips, M., Greenberg, J., Awad, J., Metabolic and environmental origins of volatile organic compounds in breath (1994) J. Clin. Pathol., 47, pp. 1052-1053
dc.descriptionWang, C., Sahay, P., Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits (2009) Sensors, 9, pp. 8230-8262
dc.descriptionSeichter, F., Wilk, A., Woerle, K., Kim, S.-S., Vogt, J.A., Wachter, U., Radermacher, P., Mizaikoff, B., Multivariate determination of the 13CO2/12CO2 ratio in exhaled mouse breath with mid- infrared hollow waveguide gas sensors (2013) Anal. Bioanal. Chem., 405, pp. 4945-4951
dc.descriptionPerez-Guaita, D., Kokoric, V., Wilk, A., Garrigues, S., Mizaikoff, B., Determination of isoprene in human breath using substrate-integrated hollow waveguide mid-infrared sensors (2014) J. Breath Res., 8
dc.languageen
dc.publisherInstitute of Physics Publishing
dc.relationJournal of Optics (United Kingdom)
dc.rightsfechado
dc.sourceScopus
dc.titleOptimized Design Of Substrate-integrated Hollow Waveguides For Mid-infrared Gas Analyzers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución