dc.creatorGupta A.
dc.creatorBonde S.R.
dc.creatorGaikwad S.
dc.creatorIngle A.
dc.creatorGade A.K.
dc.creatorRai M.
dc.date2014
dc.date2015-06-25T17:54:13Z
dc.date2015-11-26T14:30:39Z
dc.date2015-06-25T17:54:13Z
dc.date2015-11-26T14:30:39Z
dc.date.accessioned2018-03-28T21:34:01Z
dc.date.available2018-03-28T21:34:01Z
dc.identifier
dc.identifierIet Nanobiotechnology. Institution Of Engineering And Technology, v. 8, n. 3, p. 172 - 178, 2014.
dc.identifier17518741
dc.identifier10.1049/iet-nbt.2013.0015
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84905389286&partnerID=40&md5=974ce53bc40801e36a34ec71b2f40bef
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86632
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86632
dc.identifier2-s2.0-84905389286
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247172
dc.descriptionLawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1mM AgNO 3. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms. © The Institution of Engineering and Technology 2014.
dc.description8
dc.description3
dc.description172
dc.description178
dc.descriptionBandyopadhyay, U., Biswas, K., Chattopadhyay, I., Banerjee, R.K., Biological activities and medicinal properties of neem (Azadirachta indica) (2002) Curr. Sci., 82 (11), pp. 1336-1345
dc.descriptionCragg, G.M., Newman, D.J., Sander, K.M., Natural products in drug discovery and development (1997) J. Nat. Prod., 60, pp. 52-60
dc.descriptionChung, W.H., Chang, Y.C., Yang, L.J., Hung, S.I., Wong, W.R., Lin, J.Y., Clinicopathologic features of skin reactions to temporary tattoos and analysis of possible causes (2002) Arch. Dermatol., 138, pp. 88-92
dc.descriptionHabbal, O.A., Al-Jabri, A.A., El-Hag, A.G., Antimicrobial properties of Lawsonia inermis (henna): A review (2007) Aust. J. Med. Herbalism, 19, pp. 114-125
dc.descriptionAbulyazid, I., Elsayed, M.E., Mahdy, B., Ragaa, M., Ahmed, M., Biochemical study for the effect of henna (Lawsonia inermis) on Escherichia coli (2013) Arab. J. Chem., 6 (3), pp. 265-273
dc.descriptionAhmadian, S., Fakhree, M.A., Henna (Lawsonia inermis) might be used to prevent mycotic infection (2009) Med. Hypotheses, 73, pp. 629-630
dc.descriptionSiddiqui, B.S., Kardar, M.N., Ali, S.T., Khan, S., Two new and a known compound from Lawsonia inermis (2003) Helv. Chim. Acta, 86 (6), pp. 2164-2169
dc.descriptionThevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S., Electrochemical biosensors: Recommended definitions and classification (2001) Biosens. Bioelectron., 16, pp. 121-131
dc.descriptionLavhate, M.S., Mishra, S.H., A review: Nutritional and therapeutic potential of Ailanthus excelsa (2007) Pharmacognosy Rev., 1 (1), pp. 105-113
dc.descriptionWoodfolk, J.A., Allergy and dermatophytes (2005) Clin. Microbiol. Rev., 18, pp. 30-43
dc.descriptionMirmirani, P., Hessol, N.A., Maurer, T.A., Berger, T.G., Nguyen, P., Khalsa, A., Prevalence and predictors of skin disease in the women's interagency HIV study (WIHS) (2001) J. Am. Acad. Dermatol., 44, pp. 785-788
dc.descriptionIngle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M., Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria (2008) Curr. Nanosci., 4, pp. 141-144
dc.descriptionRai, M., Yadav, A., Gade, A., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol. Adv., 27 (1), pp. 76-83
dc.descriptionGade, A.K., Bonde, P., Ingle, A.P., Marcato, P.D., Duran, N., Rai, M.K., Exploitation of Aspergillus niger for synthesis of silver nanoparticles (2008) J. Biobased Mater. Bioenergy, 2, pp. 243-247
dc.descriptionDuran, N., Marcarto, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E., Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment (2007) J. Biomed. Nanotechnol., 3, pp. 203-208
dc.descriptionLi, Y., Leung, P., Yao, L., Song, Q.W., Newton, E., Antimicrobial effects of surgical masks coated with nanoparticles (2006) J. Hosp. Infection, 62, pp. 58-63
dc.descriptionMontes-Burgos, D., Hole, W.P., Smith, J., Lynch, I., Dawson, K., Characterisation of nanoparticle size and state prior to nanotoxicological studies (2010) J. Nanoparticle Res., 12, pp. 47-53
dc.descriptionBonde, S.R., A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli (2011) Nusantara Biosci., 3 (2), pp. 59-63
dc.descriptionBonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M.K., Murraya koenigii mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria (2012) Nanoscience Meth., 1, pp. 25-36
dc.descriptionSun, L., Simmons, B.A., Singh, S., Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging (2011) Biotechnol. Bioeng., 108 (2), pp. 286-295
dc.descriptionChaudhary, G., Golyal, S., Poonia, P., Lawsonia inermis Linnaeus: A phytopharmacological review (2010) Int. J. Pharm. Sci. Drug Res., 2 (2), pp. 91-98
dc.descriptionRajendran, R., Hemalatha, S., Akasakalai, K., Madhukrishna, C.H., Sohil, B., Sundaram, M.R., Hepatoprotective activity of Mimosa pudica leaves against carbontetrachloride induced toxicity (2010) J. Nat. Prod., 2, pp. 116-122
dc.descriptionIravani, S., Green synthesis of metal nanoparticles using plants (2011) Green Chem., 13, pp. 2638-2650
dc.descriptionKasthuri, J., Veerapandian, S., Rajendiran, N., Biological synthesis of silver and gold nanoparticles using apiin as reducing agent (2009) Colloids Surf., B, 68, pp. 55-60
dc.descriptionBegum, N.A., Mondal, S., Basu, S., Laskar, R.A., Mandal, D., Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts (2009) Colloids Surf., B, 71, pp. 113-118
dc.descriptionKora, A.J., Sashidhar, R.B., Arunachalam, J., Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application (2010) Carbohydrate Polym., 82 (3), pp. 670-679
dc.descriptionGade, A.K., Gaikwad, S.C., Tiwari, V., Yadav, A., Ingle, A.P., Rai, M.K., Biofabrication of silver nanoparticles by Opuntia ficus-indica: In vitro antibacterial activity and study of the mechanism involved in the syntheses (2010) Curr. Nanosci., 6, pp. 370-375
dc.descriptionGade, A., Rai, M., Kulkarni, S., Phoma sorghina, a phytopathogen mediated synthesis of unique silver rod (2011) Int. J. Green Nanotechnol., 3 (3), pp. 153-159
dc.languageen
dc.publisherInstitution of Engineering and Technology
dc.relationIET Nanobiotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleLawsonia Inermis-mediated Synthesis Of Silver Nanoparticles: Activity Against Human Pathogenic Fungi And Bacteria With Special Reference To Formulation Of An Antimicrobial Nanogel
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución